L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation.

نویسندگان

  • Shujue Li
  • Wenqi Wu
  • Wenzheng Wu
  • Xiaolu Duan
  • Zhenzhen Kong
  • Guohua Zeng
چکیده

BACKGROUND/AIMS The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. METHODS Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-488-tagged COM crystals were used in crystals adhesion experiment to distinguish from the previous COM attachment, and adhesive crystals were counted under fluorescence microscope, which were also dissolved and the calcium concentration was assessed by flame atomic absorption spectrophotometry. RESULTS Dedifferentiated MDCK cells induced by transforming growth factor β1 (TGF-β1) shown higher affinity to COM crystals. After exposure to COM for 48 hours, cell dedifferentiation were observed and more subsequent COM crystals could bind onto, mediated by Akt/GSK-3β/Snail signaling. L-carnitine attenuated this signaling, resulted in inhibition of cell dedifferentiation and reduction of subsequent COM crystals adhesion. CONCLUSIONS COM attachment promotes subsequent COM crystals adhesion, by inducing cell dedifferentiation via Akt/GSK-3β/Snail signaling. L-carnitine partially abolishes cell dedifferentiation and resists COM crystals adhesion. L-carnitine, may be used as a potential therapeutic strategy against recurrence of urolithiasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of renal epithelial cell affinity for calcium oxalate monohydrate crystals.

The binding and internalization of calcium oxalate monohydrate (COM) crystals by tubular epithelial cells may be a critical step leading to kidney stone formation. Exposure of MDCK cells to arachidonic acid (AA) for 3 days, but not oleic or linoleic acid, decreased COM crystal adhesion by 55%. Exogenous prostaglandin PGE(1) or PGE(2) decreased crystal binding 96% within 8 h, as did other agents...

متن کامل

Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface.

Attachment of newly formed crystals to renal tubular epithelial cells appears to be a critical step in the development of kidney stones. The present study was undertaken to identify autocrine factors released from renal epithelial cells into the culture medium that inhibit adhesion of calcium oxalate crystals to the cell surface. A 39-kDa glycoprotein that is constitutively secreted by renal ce...

متن کامل

Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

BACKGROUND Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. OBJECTIVE The present study aimed to assess the potential cha...

متن کامل

Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation.

Renal tubular fluid in the distal nephron of the kidney is supersaturated with calcium oxalate (CaOx), which crystallizes in the tubules as either calcium oxalate monohydrate (COM) or calcium oxalate dihydrate (COD). Kidney stones are aggregates, most commonly containing microcrystals of COM as the primary inorganic constituent. Stones also contain small amounts of embedded proteins, which are ...

متن کامل

Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kidney & blood pressure research

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2016